
-3A、-150V P沟道增强型场效应管

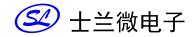
描述

SVDP2353PL3A P沟道增强型功率 MOS 场效应晶体管,采用士兰微电子的平面 VDMOS 工艺技术制造。先进的工艺及元胞设计结构使得该产品具有较低的导通电阻、优越的开关性能及很高的雪崩击穿耐量。该产品可广泛应用于推挽放大器,高侧开关电路,CMOS 功率放大器。

特点

- -3A, -150V, $R_{DS(on)(\text{MMG})}$ =1.1 Ω @ V_{GS} =-10V
- ▶ P沟道
- ◆ 低栅极电荷量
- ◆ 低反向传输电容
- ◆ 开关速度快
- ◆ 提升了 dv/dt 能力

产品规格分类


产品名称	封装形式	打印名称	环保等级	包装方式	
SVDP2353PL3ATR	DFN-8-3.3x3.3x0.75-0.65	2353	无卤	编带	

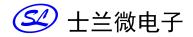
极限参数(除非特殊说明, T」=25°C)

参数		符号	参数值	单位	
漏源电压		V_{DS}	-150	V	
栅源电压		V _{GS}	±30	V	
T _C =25°C			-3.0	Α	
漏极电流 	T _C =100°C	l _D -	-1.9	A	
漏极脉冲电流	扇极脉冲电流 (注 1)		-12	Α	
耗散功率(T _C =25℃)		D	39	W	
-大于25°C 每摄氏度减少		P_D	0.3	W/°C	
单脉冲雪崩能量 (注2)		能量 (注 2) E _{AS} 24		mJ	
工作结温范围		TJ	-55~+150	°C	
贮存温度范围		T _{stg}	-55~+150	°C	

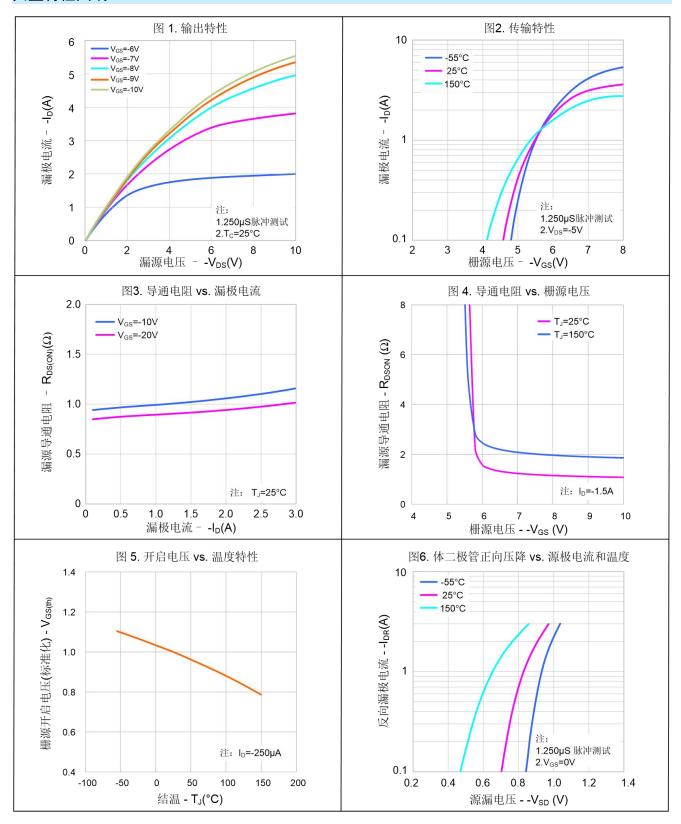
热特性

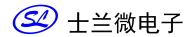
参数	符号	最小值	典型值	最大值	单位
芯片对管壳热阻	R _{eJC}			3.2	°C/W
芯片对环境的热阻	$R_{\theta JA}$			59	°C/W

电性参数(除非特殊说明, TJ=25°C)

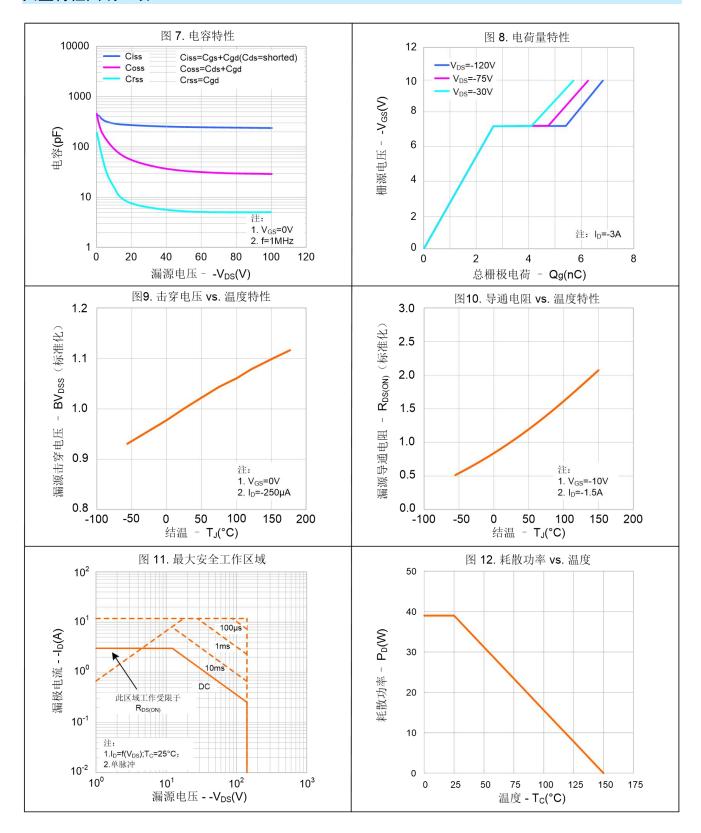

参数	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	BV _{DSS}	V_{GS} =0 V , I_D =-250 μ A	-150			V
漏源漏电流	IDSS	V _{DS} =-150V, V _{GS} =0V, T _J =25°C			-1.0	μA
		V _{DS} =-150V, V _{GS} =0V, T _J =125°C		-0.7		μA
栅源漏电流	I _{GSS}	V _{GS} =±30V, V _{DS} =0V			±100	nA
栅极开启电压	V _{GS(th)}	V _{GS} =V _{DS} , I _D =-250µA	-3.0		-5.0	V
导通电阻	R _{DS(on)}	V _{GS} =-10V, I _D =-1.5A		1.1	1.5	Ω
栅极电阻	R _g	f=1.0MHz		3.5		Ω
输入电容	Ciss			243		pF
输出电容	Coss	V_{DS} =-75V, V_{GS} =0V, f=1.0MHz		30		
反向传输电容	Crss			5.0		
开启延迟时间	t _{d(on)}	V _{DD} =-75V, V _{GS} =-10V,		3.6		
开启上升时间	t _r	188 1817 188 1817		23		
关断延迟时间	t _{d(off)}	R_G =25Ω, I_D =-3.0A (注 3, 4)		12		ns
关断下降时间	t _f	(在 3, 4)		20		
栅极电荷量	Qg	\(- 75\(\) - 40\(\) - 2.04		6.3		
栅极-源极电荷量	Q _{gs}	V _{DS} =-75V, V _{GS} =-10V, I _D =-3.0A (注 3, 4)		2.7		nC
栅极-漏极电荷量	Q_{gd}	(注 3, 4)		2.1		

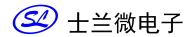
反向二极管特性参数

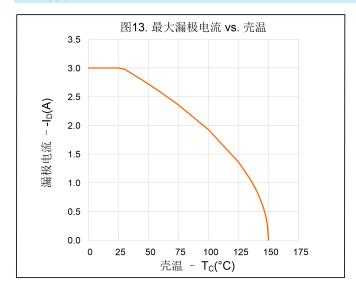

参数	符号	测试条件	最小值	典型值	最大值	单位
源极电流	Is	T _C =25°C, MOS 管中源极、漏极构成的反偏			-3.0	۸
源极脉冲电流	I _{SM}	P-N 结			-12	Α
源-漏二极管压降	V _{SD}	I _S =-3.0A, V _{GS} =0V			-1.4	V
反向恢复时间	T _{rr}	I_S =-3.0A , V_{GS} =0V , dI_F/dt =100A/ μ s		68		ns
反向恢复电荷	Qrr	(注3)		0.2		μC

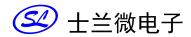

注:

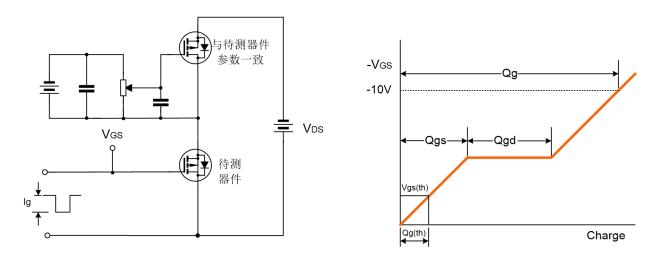
- 1. 脉冲宽度=5μs;
- 2. L=1mH,I_{AS}=-7.0A,V_{DD}=-80V,V_{GS}=-10V,开始温度 T_J=25°C;
- 3. 脉冲测试:脉冲宽度≤300µs,占空比≤2%;
- 4. 基本上不受工作温度的影响。

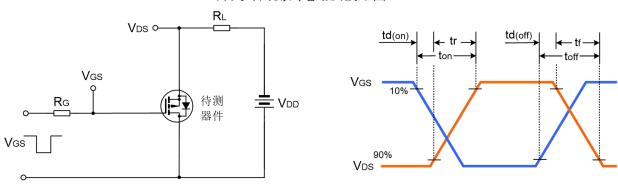



典型特性曲线

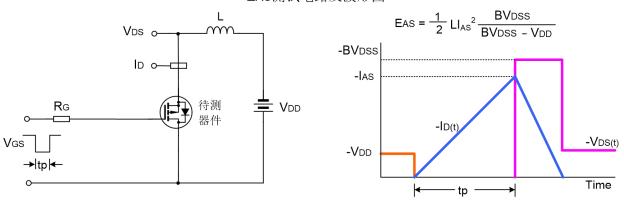


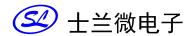

典型特性曲线 (续)


典型特性曲线(续)

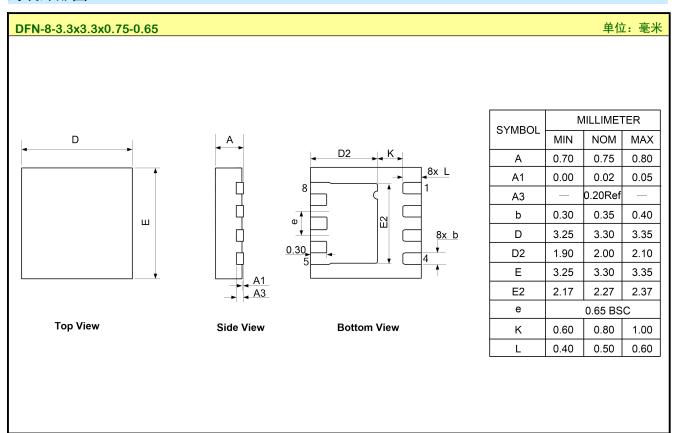


典型测试电路


栅极电荷量测试电路及波形图



开关时间测试电路及波形图



EAS测试电路及波形图

封装外形图

重要注意事项:

- 1. 士兰保留说明书的更改权, 恕不另行通知。
- 2. 客户在下单前应获取我司最新版本资料,并验证相关信息是否最新和完整。产品应用前请仔细阅读说明书,包括其中的电路操作注意事项。
- 3. 我司产品属于消费类电子产品或其他民用类电子产品。
- 4. 在应用我司产品时请不要超过产品的最大额定值,否则会影响整机的可靠性。任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用我司产品进行系统设计、试样和整机制造时遵守安全标准并 采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生。
- 5. 购买产品时请认清我司商标,如有疑问请与本公司联系。
- 6. 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!
- 7. 我司网站 http://www.silan.com.cn

杭州士兰微电子股份有限公司 http://www.silan.com.cn

SVDP2353PL3A说明书

产品名称: SVDP2353PL3A 文档类型: 说明书

版 权: 杭州士兰微电子股份有限公司 公司主页: http://www.silan.com.cn

版 本: 1.8

修改记录:

1. 添加曲线图 4、图 5、图 12, 更新图 13

2. 删除上下限规范

3. 更新重要注意事项

版 本: 1.7

修改记录:

1. 修改参数

2. 更新封装外形图

版 本: 1.6

修改记录:

- 1. 更新产品规格分类
- 2. 更新典型测试电路
- 3. 更新重要注意事项

版 本: 1.5

修改记录:

- 1. 修改 EAS 测试条件, 电感和量产条件一致
- 2. 修改电容测试电压为-75V,并更新相应电容值

版 本: 1.4

修改记录:

- 1. 添加耐压典型值
- 2. 增加 125 摄氏度下 Ipss 漏电流典型值
- 3. 添加 Rg、电容上下限规范

版 本: 1.3

修改记录:

1. 更新封装外形图

版 本: 1.2

修改记录:

- 1. 修改描述
- 2. 更新电气特性图

版 本: 1.1

修改记录:

1. 更新封装外形图

版 本: 1.0

修改记录:

1. 正式版本发布

杭州士兰微电子股份有限公司 http://www.silan.com.cn